THERMODYNAMIC (t, S) GRAPH FOR MERCURY CONSTRUCTED FROM EXPERIMENTAL DATA ON THE VELOCITY OF SOUND

I. I. Novikov and E. P. Sheludyakov

Thurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 2, pp. 137-139, 1966

Recently mercury has been attracting more and more attention. This is because, in the first place, it has been planned to use it in its liquid and vapor phases as a heat conductor and working substance in a whole range of power equipment. It is therefore clear that a study of its thermodynamic properties is of special importance. There have been several attempts to prepare tables of the thermodynamic properties of mercury. Reference can be made to the tables of Scheldon [1] and Eck [2], and to the results of Vukalovich and Fokin¹ and others.

Fig. 1. Values of the derivative $(\partial v/\partial p)_s$ for mercury in the form of isobars and saturation lines.

In constructing the entropy diagram (t, S) for mercury, the authors used a method which employs experimental data on the velocity of sound, the essence of which is as follows. As is well known, the velocity of sound c can be expressed in terms of a specific volume v and the derivative $(\partial p / \partial v)_s$ by the equation

 $c = \sqrt{-gv^2(\partial p / \partial v)_s}$

(1)

Fig. 2. Isentropic curves for mercury in the coordinates v, t, constructed from data on the velocity of sound.

From the available PVT data it is possible, for a given value of the velocity of sound, to calculate the derivative $(\partial p / \partial v)_s$ for the given state. Then, using the expression for the exact differential of the volume

$$dv = \left(\frac{\partial v}{\partial p}\right)_s dp + \left(\frac{\partial v}{\partial s}\right)_p ds$$

for the condition s = const we have

$$dv = \left(\frac{\partial v}{\partial p}\right)_s dp$$
, or $\Delta v = \left(\frac{\partial v}{\partial p}\right)_s \Delta p$. (2)

Equation (2) makes it possible to calculate the change in specific volume v for a chosen isentropic curve s = const and a given pressure change Δp .

Thus an entropy diagram can be constructed directly from the experimental data.

Previously the authors measured the speed of sound in saturated and superheated mercury vapor in the temperature range $225-400^{\circ}$ C and pressure range 0.05-2.2 kg/cm². The error in determining the velocity of sound did not exceed 0.5%.

To check the results, the specific volumes of the vapor were calculated from the same equation as used by Vukalovich and Fokin. In addition, the same p_s -S (pressure-entropy) dependence was taken on the saturation line.

Values of the derivative $(\partial v / \partial p)_s$ (Fig. 1) were calculated from equation (1), and using these values the isentropic curves in the coordinates v-t (Fig. 2) were constructed, providing sufficient accuracy for t-S diagrams to be plotted. V and t were calculated at each point on the isentropic curve, using the parameters of the previous point

by the method of successive approximations. The origins of all the isentropic curves lay on the line of saturation. The results of the calculation of the isobaric and isentropic curves in the coordinates v-t were used to plot isobars and isochors in the coordinates t (°C) and

S (kcal/kg•deg) (Fig. 3 and Tables 1 and 2). In Fig. 3 are also shown isobars, indicated by the broken lines, for p = 0.1, 0.12, 0.3, and 1.4 kg/cm², taken from the data of Vukalovich and Fokin. Near the saturation line the isobars almost

¹M. P. Vukalovich, L. P. Fokin, The Thermodynamic Properties of Mercury [in Russian], Moscow Power Engineering Institute Report, 1963.

t	s	t	s	t	s	t	S	t	\mathbf{s}	t	s
p = 224.5 240 260 p = 230.9 240 360	S 0.05 0.1634 0.1643 0.1654 0.1654 0.1619 0.1623 0.1633	t 320 320 340 360 380 400 $p = -256 \tau$	S 0.1600 0.1609 0.1618 0.1626 0.1634 0.1642 0.12 0.12 0.1568	t 268 280 300 320 340 360	S 0.1604 = 0.16 0.1539 0.1545 0.1554 0.1563 0.1570 0.1578	<i>t</i> 360 380 400 286.7 300 320 340	<i>S</i> 0.1557 0.1565 0.1573 = 0.25 0.1504 0.1510 0.1518 0.1526	<i>t</i> 380 400 318.8 340 360 380 400	S 0.1497 0.1504 = 0.5 0.1448 0.1457 0.1465 0.1474 0.1482	t 400 $p =$ 341.5 360 380 400 $p =$ 349 2	S 0.1447 = 0.8 0.1412 0.1419 0.1427 0.1434 = 0.9 0.1403
360 280 300 p = 241.0 260 320 320 340 320 340 260	$ \begin{array}{c} 0.1633\\ 0.1634\\ 0.1654\\ 0.08\\ 0.1595\\ 0.1604\\ 0.1614\\ 0.1623\\ 0.1632\\ 0.1632\\ 0.1632\\ 0.2650\\ \end{array} $	$\begin{array}{c} 256.7 \\ 260 \\ 280 \\ 300 \\ 320 \\ 340 \\ 260 \\ 380 \\ 400 \\ p = \\ p = \\ 255 \\ 7 \end{array}$	$\begin{array}{c} 0,1563\\ 0.1564\\ 0.1573\\ 0.1582\\ 0.1591\\ 0.1599\\ 0.16075\\ 0.1616\\ 0.1624\\ 0.14$	360 380 400 272.9 280 300 320 340 360 290	$\begin{array}{c} 0.1578\\ 0.1585\\ 0.1593\\ = 0.18\\ 0.1530\\ 0.1533\\ 0.1542\\ 0.1551\\ 0.1559\\ 0.1567\\ 0.457\end{array}$	340 360 380 400 294.4 300 320 340 340 360	$\begin{array}{c} 0.1526\\ 0.1534\\ 0.1542\\ 0.1550\\ = 0.3\\ 0.1489\\ 0.1492\\ 0.1501\\ 0.1509\\ 0.1517\\ 0.1517\\ 0.1517\end{array}$	400 p = 322.5 340 360 380 400 p = 327.0 340 327.0 340	$ \begin{array}{c} 0.1482 \\ = 0.55 \\ 0.1441 \\ 0.1448 \\ 0.1456 \\ 0.1456 \\ 1.471 \\ = 0.6 \\ 0.1439 \\ 0.1439 \\ 0.1439 \\ 0.1439 \end{array} $	$ \begin{array}{c} 349.2 \\ 360 \\ 380 \\ 400 \\ p = \\ 355.0 \\ 360 \\ 380 \\ 401 \\ p = \\ 264 \\ 0 \end{array} $	$\begin{array}{c} 0.1403 \\ 0.1407 \\ 0.1415 \\ 0.1422 \\ = 1.0 \\ 0.1396 \\ 0.1396 \\ 0.1405 \\ 1.2 \\ 0.1420 \end{array}$
380 400 249.0 260 280	$\begin{array}{c c} 0.1059\\ 0.1659\\ 0.1668\\ \hline 0.1\\ 0.1577\\ 0.1582\\ 0.1591\end{array}$	280 300 320 340 360 380	0.1558 0.1566 0.1574 0.1581 0.1589 0.1597	380 400 277.3 300 320 340	$ \begin{array}{c} 0.1574 \\ 0.1583 \\ = 0.4 \\ 0.1521 \\ 0.1532 \\ 0.1540 \\ 0.1548 \end{array} $	400 20 308.0 320 340 360	0.1325 0.1532 = 0.4 0.1466 0.1471 0.1480 0.1489	380 400 29 = 335.9 360 380	$\begin{array}{c} 0.1437\\ 0.14555\\ 0.14625\\ = 0.7\\ 0.1422\\ 0.1432\\ 0.1440\end{array}$	380 400 p = 373.0 380 400	$\begin{array}{c} 0.1386\\ 0.1394\\ = 1.5\\ 0.1368\\ 0.13705\\ 0.13775\\ \end{array}$

Table 1 Isobars in the Coordinates t (°C), S[kcal/kg•deg] (p in kg/cm²)

Table 2

Isochors in the Coordinates t, S (v, m^3/kg), t in °C, S in kcal/kg•deg

t	s	t	S	ť	S
371.7 380 400 • 347.2 360 380 400 330.3 340 380 400 318.7 340 370 380 400 318.7 340 320 340	$\begin{array}{c c c} v = 0.2 \\ 0.1370 \\ 0.1372 \\ 0.1376 \\ \hline \\ v = 0.3 \\ 0.1404 \\ 0.14075 \\ 0.1414 \\ 0.1420 \\ v = 0.4 \\ 0.1432 \\ 0.1432 \\ 0.1436 \\ 0.1446 \\ v = 0.5 \\ 0.1446 \\ v = 0.5 \\ 0.1448 \\ 0.1463 \\ 0.1463 \\ v = 0.7 \\ 0.1476 \\ 0.1488 \\$	360 380 380 400 284.3 300 320 340 360 380 400 226 2860 320 320 340 226 280 320 340 226 280 320 340 226 280 300 320 340 2 260 300 380 400 253.6 280 300 320	0.1494 0.1500 0.1506 0.1508 0.1512 0.15125 0.15225 0.1528 0.1528 0.1528 0.1528 0.1538 0.1538 0.1544 0.1558 0.1558 0.1564 0.1569 0.15745 0.1569 0.1575 0.1580 0.1585	340 360 380 380 400 2 237,5 260 280 300 320 340 360 240 360 240 360 280 380 240 231.6 280 230 320 340 360 320 340 340 360 340 340 340 360 340 360 340 340 360 340 340 360 340 360	$\begin{array}{c} 0.1590\\ 0.1595\\ 0.1600\\ 0.1605\\ \end{array}\\ =3.0\\ 0.1604\\ 0.1604\\ 0.1614\\ 0.16165\\ 0.1622\\ 0.1622\\ 0.1627\\ 0.1632\\ 0.1643\\ 0.1649\\ =3.5\\ 0.1647\\ 0.1626\\ 0.1632\\ 0.1636\\ 0.1649\\ 0.1655\\ 0.1664\\ 0.1667\\ \end{array}$

coincide with the present results (continuous lines), but diverge somewhat at higher temperatures; however, in all cases the maximum deviation does not exceed 1%.

REFERENCES

1. L. A. Scheldon, Properties of mercury vapor. Trans. ASME, 46, 1924.

2. H. Eck, Zahlentafel und Diagramme für Quecksilberdampf, Forschung, no. 1, 4, 1933.

3. I. I. Novikov and Yu. S. Trelin, "The construction of entropy diagrams from experimental data on the velocity of sound," Atomnaya energiya, vol. 10, no. 5, 1961.

16 March 1965

Novosibirsk